Math for Management, Winter 2023 List 5 Derivative calculations

For a function f(x) and a number a, the **derivative of** f at a, written f'(a), is the slope of the tangent line to y = f(x) at the point (a, f(a)) and is calculated as

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

The function f(x) is **differentiable at** a if f'(a) exists and is finite.

- 104. Calculate f'(5) for the function $f(x) = x^3$. Hint: See Task 90(b).
- 105. Calculate f'(1) for the function $f(x) = \sqrt{x}$. Hint: See Task 50(b).
- 106. The graph of a function is shown below. Near x = 1, x = 3, and x = 7, part of the tangent lines to the graph at those points is shown as a dashed line segment.

- (a) List all points where the function is not continuous.
- (b) List all points where the function is not differentiable (that is, where the derivative does not exist).

107. List all points where $f(x) = \frac{|x| - 4}{|x - 4|}$ is not differentiable.

The Constant Multiple Rule: If c is a constant then (cf)' = cf' (cf(x))' = cf'(x) $\frac{d}{dx}[cf] = c\frac{df}{dx}$ D[cf] = cD[f](these are four ways of writing exact the same fact). The Sum Rule: $\frac{d}{dx}[f+g] = \frac{d}{dx}[f] + \frac{d}{dx}[g]$. The Power Rule: If p is a constant then $\frac{d}{dx}[x^p] = px^{p-1}$.

108. All parts of this task have exactly the same answer!

- (a) Find f'(x) for the function $f(x) = 2x^7$.
- (b) Give f' if $f = 2x^7$.
- (c) Find y' for $y = 2x^7$.
- (d) Compute $\frac{df}{dx}$ for the function $f(x) = 2x^7$.
- (e) Compute $\frac{dy}{dx}$ for $y = 2x^7$.

- (f) Give the derivative of $2x^7$ with respect to x.
- (g) Find the derivative of $2x^7$.
- (h) Calculate $\frac{d}{dx}2x^7$. (i) Calculate $(2x^7)'$. (j) Calculate $D[2x^7]$.
- (k) Differentiate $2x^7$ with respect to x.
- (ℓ) Differentiate $2x^7$.

109. Differentiate
$$x^5 + \frac{2}{9}x^3 + \sqrt{3x} + \frac{x^{10}}{\sqrt{x}}$$

- 110. Differentiate $(x + \sqrt{x})^2$.
- 111. For each of the functions below, can the Power Rule and/or Constant Multiple Rule (along with maybe some algebra) be used to find the derivative? If so, give the derivative.
 - (a) $2x^6$ (e) $x^{\sin x}$ (i) $\sin(5\cos(x))$ (m) $\ln(2+x)$ (j) $e^{5\ln(x)}$ (f) $(\sin x)^x$ (b) $2\sqrt{x}$ (n) $\ln(2x)$ (k) $\frac{3}{x^6}$ (c) $\sqrt{5x}$ (g) e^x (o) $\ln(2^x)$ (d) x^{π} (h) $\cos(5x)$ $(\ell) x^x$ (p) $\ln(x^2)$
- 112. Is it possible to find the derivative of the following functions using the Power Rule, Constant Multiple Rule, and Sum Rule?
 - (a) $x + \ln(5e^x)$ (b) $\frac{2x}{x+6}$ (c) $\frac{x+6}{2x}$ (d) $\frac{x+\frac{1}{x}}{\sqrt{x}}$

113. Give the derivative of each of the following functions.

(a) x^{7215} (f) \sqrt{x}^{3} (b) $5x^{100} + 9x$ (g) 31 (c) $2x^{3} - 6x^{2} + 10x + 1$ (h) $x + \frac{1}{x}$ (d) $3\sqrt{x}$ (i) $\sqrt{x} + \frac{1}{\sqrt{x}}$ (e) $\sqrt[3]{x}$ (j) $(3x + 7)^{2}$

114. Is $x^3 - x^{1/3}$ continuous everywhere? Is it differentiable everywhere?

115. If $f(x) = 8x^4 - x^2$, for what values of x does f(x) = 0? For what values of x does f'(x) = 0?

116. For the function $f(x) = x^3$ and $g(x) = 2x^2$, ...

- (a) Calculate the derivative of f.
- (b) Calculate the derivative of g.
- (c) Calculate the derivative of

$$f(x) + g(x) = x^3 + 2x^2.$$

(d) Calculate the derivative of

$$f(x) \cdot g(x) = 2x^5.$$

- (e) Does (f + g)' = f' + g'? In other words, is your answer to (c) the same as adding your answers to (a) and (b)?
- (f) Does the derivative of a sum equal the sum of the derivatives?
- (g) Does $(f \cdot g)' = f' \cdot g'$? In other words, is your answer to (d) the same as multiplying your answers to (a) and (b)?
- (h) Does $\frac{\mathrm{d}}{\mathrm{d}x} \left[f \cdot g \right] = \frac{\mathrm{d}f}{\mathrm{d}x} \cdot \frac{\mathrm{d}g}{\mathrm{d}x}$?
- (i) Does the derivative of a product equal the product of the derivatives?
- 117. Which limit expression below gives the derivative of x^3 at the point x = 2?

(A)
$$\lim_{x \to 2} \frac{x^3 - 8}{x}$$
 (C) $\lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$
(B) $\lim_{h \to 0} \frac{h^3 - 8}{h}$ (D) $\lim_{h \to 0} \frac{(2+h)^3 - h^3}{h}$

- 118. (a) Find $(x^{10} + 100x + 1000)'$.
 - (b) Find $D[9x + \sqrt{9x}]$. (c) Find $\frac{d}{dx}[(2x+3)^2]$. (d) Find $\frac{dy}{dx}$ for $y = \frac{x+12}{2x}$.
- 119. For each function below, state whether its derivative can be found using *only* algebra, the Power Rule, the Constant Multiple Rule, and the Sum Rule. If so, give its derivative.
 - (a) $4x^2 27x$ (d) $(x + \sqrt{7})^2$ (g) $\frac{3x}{6x + 15}$ (b) $4x^2 - 27$ (e) 2^{x+7} (f) $\frac{5}{x}$ (h) $\frac{6x + 15}{3x}$

Individual functions: $(x^p)' = px^{p-1}$, $(a^x)' = a^x \ln(a)$, $(\ln(x))' = \frac{1}{x}$, $(\sin(x))' = \cos(x)$, $(\cos(x))' = -\sin(x)$. Sum Rule: (f+g)' = f'+g' Product Rule: $(f \cdot g)' = fg' + f'g$ Chain Rule: $(f(g))' = f'(g) \cdot g'$ Quotient Rule: $(\frac{f}{g})' = \frac{gf' - fg'}{g^2}$

120. Give the derivative of $5\sin(x) + \frac{2}{3}\cos(x) - x^3 + 9$.

121. Using the Product Rule, give the derivative of $5^x \cdot \sin(x)$.

- 122. Use the Product Rule (twice) to find the derivative of $x^6 \cdot \cos(x) \cdot 2^x$.
- 123. Give the derivative of every function in Task 119.

124. True or false?

- (a) (f+g)' = f' + g'
- (b) $(f \cdot g)' = f' \cdot g'$
- (c) $(f \cdot g)' = f'g + fg'$
- (d) $\frac{\mathrm{d}}{\mathrm{d}x}(fg) = f\frac{\mathrm{d}g}{\mathrm{d}x} + g\frac{\mathrm{d}f}{\mathrm{d}x}$
- (e) $(f \cdot g)' = g'f' + gf'$
- (f) (f/g)' = gf' fg'

125. Find the derivative of $\sin(5^{\cos(2x^3+8)})$.

- 126. (a) Use the Quotient Rule to differentiate $\frac{\sin(x)}{x^4}$.
 - (b) Use the Product Rule to differentiate $x^{-4}\sin(x)$.
 - (c) Use algebra to compare your answers from parts (a) and (b).
- 127. Find the following derivatives (note $(p)-(\dot{z})$ require the Chain Rule).

(a)
$$f'(x)$$
 for $f(x) = x^9 \sin(x)$
(a) $\frac{d}{dx} (x^9 \sin(x))$
(b) $\frac{d}{dx} (10^x + \log_{10}(x))$
(c) $\frac{d}{dx} (10^x \cdot \log_{10}(x))$
(d) $\frac{d}{dx} (x^9 e^x \sin(x))$
(e) $\frac{d}{dx} (x^9 e^x \sin(x))$
(e) $\frac{d}{dx} (4x^3 + x \sin x)$
(f) $\frac{d}{dt} \sin(t) \cos(t)$
(g) $\frac{d}{dx} \frac{\cos(x)}{5x^3 - 12}$
(h) $\frac{d}{dx} \frac{5x^3 - 12}{\cos(x)}$
(i) $\frac{d}{dt} \frac{t^7 + t^2}{e^t}$
(j) $\frac{d}{dx} (5x - 7)^2$
(k) $\frac{d}{dt} e^t \cos(t)$
(l) $\frac{d}{dt} (t \sin(t) + \frac{e^t}{t^2 + 1})$
(k) $\frac{d}{dx} \frac{\sin(t)}{te^t}$
(m) $\frac{d}{dt} t^{5/2} \sin(t)$

(n) $\frac{d}{dx} 2^{15}$ (ń) $\frac{\mathrm{d}}{\mathrm{d}x} x^{15}$ (o) $\frac{d}{du} u^{15}$ (ó) $\frac{\mathrm{d}}{\mathrm{d}x} u^{15}$ if u is a constant (p) $\frac{\mathrm{d}}{\mathrm{d}x} u^{15}$ if u is a fn. of x(q) $\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))^{15}$ (r) $\frac{\mathrm{d}}{\mathrm{d}x}\ln(\cos(x))$ (s) $\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{\ln(\cos(x))}$ (ś) $\frac{\mathrm{d}}{\mathrm{d}x} e^{\sqrt{\ln(\cos(x))}}$ (t) $\frac{\mathrm{d}}{\mathrm{d}x} e^{\sqrt{\ln(\cos(x^6))}}$ (u) $\frac{\mathrm{d}}{\mathrm{d}t} 5\sin(2t+1)$ (v) $\frac{\mathrm{d}}{\mathrm{d}t} A \sin(\omega t + \phi)$ if A, ω, t are constants (w) $\frac{d}{dx}(7x^2 + \sin(x))^2$ (x) $\frac{\mathrm{d}}{\mathrm{d}x}(\log_3(x))^2$ (y) $\frac{d}{dt} \tan(t^3 + 8t^2 + 2t + 18)$ (z) $\frac{\mathrm{d}}{\mathrm{d}x}\cos(x^3e^x)$ (ź) $\frac{\mathrm{d}}{\mathrm{d}x} x^3 \cos(9x)$ (ż) $\frac{\mathrm{d}}{\mathrm{d}x} \frac{x^3 \cos(x)}{e^{\sin(x)}}$